Advertisement

New study finds the mix that makes Titan’s lakes spew nitrogen bubbles

New study finds the mix that makes Titan’s lakes spew nitrogen bubbles In a new study published in AGU’s journal Geophysical Research Letters, researchers simulated Titan’s lakes in a pressurized chamber. They found the right combination of methane, ethane and nitrogen crucial for bubbles to form.

To determine how ethane, methane and nitrogen might burst into bubbles on Titan, Kendra Farnsworth, a planetary scientist at the University of Arkansas in Fayetteville and lead author of the new study, and her colleagues conducted experiments in a six-foot tall, pressurized chamber simulating conditions on the moon. Inside, they set the atmospheric pressure to 1.5-bar—which is 1.5 times higher than Earth’s at sea level—and temperatures ranged from a brisk 83 degrees Kelvin (-190 Celsius or -310 Fahrenheit) to a balmy 94 degrees Kelvin (-179 Celsius or -290 Fahrenheit).

The researchers allowed one liquid to flow into a sample dish containing a pool of the other. The researchers then cooled the inside of the chamber until it was either above or below 86 degrees Kelvin (-187 Celsius or -305 Fahrenheit) to let nitrogen dissolve. In one set of experiments, ethane flowed into ponds of methane. In another, methane flowed into ethane. The team then gradually warmed up the chamber and waited for bubbles to erupt.

Two scenarios resulted in bubbles. At temperatures below 86 degrees Kelvin, ethane layered on top of nitrogen-rich methane, no matter what order they were poured into the petri dish. As the temperature warmed, the methane underneath began to foam and when the layers dissolved, bubbles reached the surface.

If the chamber was above 86 degrees Kelvin when the researchers added the liquids, methane flowing into ethane didn’t yield any foam. Only ethane flowing into methane pools produced bubbles—and did so forcefully.

“The most surprising thing was how violent the explosions were,” Farnsworth said. During one experiment, the outburst of bubbles was so strong, it affected the equipment. “All of a sudden, I look over and the bubbles literally blew up and hit my camera,” she recalled.

Read more about this research here:


Read the original research study here:

American Geophysical Union,AGU,

Post a Comment

0 Comments